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Abstract. Using two-dimensional numerical simulations of a granular gas excited by vibrating one of the
container boundaries, we study the fluctuations of its total kinetic energy, of the power injected into the
gas by the moving boundary and of the power dissipated by inelastic collisions. We show that an effective
number Nf of degrees of freedom that depends on the inelasticity of collisions can be extracted from the
probability density function (PDF) of the fluctuations of the total kinetic energy E. 〈E〉/Nf is then an
intensive variable contrary to the usually defined granular temperature Tgr = 〈E〉/N . We then show that
an intensive temperature can also be calculated from the probability of certain large deviations of the
injected power. Finally, we show that the fluctuations of injected and dissipated power are related such
that their ratio is inversely proportional to the square-root of the ratio of their correlation times. This
allows to define a quantity homogenous to a temperature that is intensive and conserved in the process of
energy dynamics from its injection by the driving piston to its dissipation by inelastic collisions.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Granular matter is a canonical example of a dissipative
system. Indeed in such media, when two particles collide,
a part of their kinetic energy is irreversibly lost by in-
elastic processes. Without a continuous input of energy,
the granular gas cools down and even collapses into clus-
ters [1,2]. However, when power is injected continuously,
for instance by moving a boundary of the container, a
statistically stationary regime is obtained where granular
matter at low enough density can behave like a gas in
which all particles follow erratic motions [3]. In this state,
it is tempting to use some concepts of kinetic theory to
describe the granular gas. However such an extension is
not obvious for dissipative systems. This is well known
for high densities but we emphasize that we also expect
nontrivial dissipative effects in low mean density situa-
tions. Indeed, the power is injected at the surface of the
container by a moving boundary in most realistic con-
figurations, but dissipated in the bulk by inelastic colli-
sions. We show in Section 2 that this generates stationary
states with a strongly inhomogeneous density distribution
even in the absence of gravity. Accordingly, the usually de-
fined granular temperature, i.e. the mean kinetic energy
per particle, Tgr = 〈E〉/N , is not an intensive variable.
However, we observe in Section 3 that it is possible to ex-
tract an effective number Nf of degrees of freedom from
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the probability density function (PDF) of the fluctuations
of the total kinetic energy E(t), such that 〈E〉/Nf is in-
tensive. We then study in Section 4 the fluctuations of the
power, I(t), injected by the moving piston into the gran-
ular gas, and its large deviations. Finally, we illustrate
a remarkable relation between the fluctuations of the in-
jected power and the dissipated one D(t) by inelastic colli-
sions in the bulk of the granular gas. In a stationary state,
besides the obvious relation, 〈I〉 = 〈D〉, the standard de-
viations σ(I) and σ(D) are such that σ(I)2τI = σ(D)2τD,
where τX is the correlation time of X . It is therefore pos-
sible to define a quantity corresponding to a temperature,
σ(I)2τI/〈I〉 = σ(D)2τD/〈D〉, that characterizes the power
fluctuations from injection to dissipation.

2 Granular temperature

The simulated system is the one of reference [4]. An event
driven method is used. N disks of unit mass and radius
a are enclosed in a rectangular box. As in real experi-
ments [3], the energy input is provided by one wall of
size L which moves with a periodic pseudo-sinusöıdal mo-
tion approximated here with parabolas. The opposite wall
is motionless, and the particle-wall collisions are elastic.
Periodic boundary conditions are taken for the two other
lateral walls, of size H (see Fig. 1) [5]. Here we con-
sider only the case without gravity. The inelastic binary
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Fig. 1. Snapshot of the simulated 2D granular gas in different
volumes at constant density: left cell, N = 400, L = H = 100 a,
right cell, N = 900 L = H = 150.

collisions between particles are modelled with a constant
restitution coefficient, r, where r is the ratio between the
pre- and post-collisional normal relative velocities. Here-
after, we take r = 0.9. The vibration amplitude, A = 3a
and the period, τp, taken as unit of time, are maintained
constant, and we study the effect of stretching the volume
of the box at constant particle density, ρ = 0.04.

The granular temperature is usually defined as Tgr =
v2/2, where v2 is the mean kinetic energy per particle
(and the overbar stands here for the average on time and
on the particles). Depending on the way chosen to change
the volume, it is generally not an intensive variable. This
is clearly shown on the log-log plot of the inset in Figure 2.
If L is increased proportionally to N with ρ and H con-
stant, we just replicate the initial cell. In that case, Tgr

is constant as long as the long wavelength instability of
the homogeneous state, appearing when the aspect ratio,
Γ = L/H , is large enough, does not occur [2,6]. However,
if we increase H (or both L and H) with ρ = N/(HL)
constant, Tgr decreases continously. This decrease of Tgr

with increasing H can be understood by considering both
injection and dissipation phenomena.

As in most dissipative systems [9], we have an energy
balance equation of the form

dE

dt
= I − D. (1)

The obvious equation 〈I〉 = 〈D〉, obtained in the station-
ary regime, can be used to evaluate the granular tempera-
ture. Indeed, the mean injected power 〈I〉 can be estimated
in first approximation as the 2D granular pressure p mul-
tiplied by the piston length, L, and the piston velocity, V ,
where, like in a non-dissipative gas, p is estimated as the
kinetic energy density 〈E〉/S = ρTgr with S = HL is the
area of the cell [7]. Therefore 〈I〉 ∼ ρTgrLV . On average,
the dissipated energy at each collision is proportional to
(1 − r2)〈E〉/N = (1 − r2)Tgr. The collision frequency can

be estimated by ρ
√

v2a, where v2 ∼ Tgr. Therefore the
total dissipated power is 〈D〉 ∼ (1 − r2)NρaT

3/2
gr . This

gives in the stationary regime, Tgr ∼ V 2/((1 − r2)aρH)2,
i.e. Tgr does not depend on L at constant ρ but decreases
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Fig. 2. The granular temperature Tgr = E/N for different
surface of the cell S = HL with ρ = N/S constant: (•) only L
is increased, (∗) H and L are increased, (�) only H is in-
creased. Dashed and dotted lines represent the fits obtained
when the space dependence of the density is taken into ac-
count (see text).

when H grows. Note however that instead of a power law
dependence of Tgr on H with an exponent −2, we get an
exponent somewhere between −1.5 and −1.1. This shows
the roughness of the above argument which assumes a
constant piston velocity V when evaluating the injected
power and does not take into account the strong inho-
mogeneities of the particle density which are apparent in
Figure 1. This can be taken into account by defining the
density ρ(x) and the granular temperature T (x) in a thin
layer at a distance x from the piston. The pressure must
be constant in the absence of gravity. The kinetic relation
p = ρ(x)T (x) is still valid in the dilute continuum limit.
Writing the energy balance (1) in the above thin layer
(I then consists of the difference between the two surface
terms, i.e. the energy flux across the layer), we get T (x)
and observe that, although Tgr = 〈T (x)〉 versus H is not
any more a simple power law, it displays a much better
agreement with our numerical simulations (see Fig. 2).
Anyway, the main point remains that the injected power
does not display the same functional dependence as the
dissipated one when the system size is changed at con-
stant density. Therefore the mean total kinetic energy 〈E〉
is not an extensive variable or correspondingly Tgr is not
intensive.

3 Energy fluctuations

In this section, we emphasize another difference with
nondissipative systems at equilibrium. The temporal fluc-
tuations of global variables such as the injected power, I,
or the dissipation, D, related to their mean value, are
large, and more importantly, their standard deviation, σ,
does not decrease according to the 1/

√
N law when the
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Fig. 3. Log-log representation of the relative fluctuations of
the injected and the dissipated powers and the kinetic energy
(from the top to the bottom respectively) versus the number
of particles in a square cell. The density of particles is kept
constant: ρ = 0.04.

particle number is increased at constant density in a
square box (see Fig. 3). Only the kinetic energy dis-
plays a power law fall-off but much more slowly than for
systems at equilibrium, since σ(E)/〈E〉 ∝ N−γ with
γ ≈ 0.2 instead of 1/2. We think that relative fluctuations
which decay very slowly or even stay finite in the large
N limit should be taken into account to characterize the
stationary state of a granular gas using thermodynamic
like concepts.

We first consider the fluctuations of kinetic energy and
try to extract from them an intensive variable TE which
characterises the kinetic energy per degrees of freedom. It
is known that the PDF of the fluctuations of energy of a
perfect gas follows a χ2-law. Indeed, this probability law
is the one for a sum of the squares of independent random
variables with a Gaussian distribution [8]. Surprisingly, as
we already showed in [9], this distribution also perfectly
fits energy fluctuations of a dissipative gas (see Fig. 4).
Moreover, this remains true whatever the system size in
the kinetic regime (i.e. when there is no clustering). The
χ2-law can be written:

Π(E) = C · E
(

Nf
2 −1

)

exp
(
−βE

E

2

)
(2)

where C is a normalization constant, βE = 2〈E〉/σ(E)2
and Nf = 2〈E〉2/σ(E)2 is the number of independent
Gaussian variables. For a perfect gas in a two-dimensional
box, Nf = 2N , but in the case of dissipative collisions,
Nf is smaller and decreases if the restitution coefficient is
decreased for N fixed [9]. Nf scales like N2γ and thus de-
pends on the way the box is increased to keep the density
constant. In a square cell, we have Nf ∝ N0.4 (see Fig. 3).
When only H is increased, Nf becomes independent of N
since σ(E)/〈E〉 first grows with N and then saturates.
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Fig. 4. PDF of the total kinetic energy, E, given by the nu-
merical simulation with L = H = 50, N = 100 (· · · ) and the
best fit with a χ2-law.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

5

6

7

8

9

10

11

System size S/a2

T
E

1.6

2.6

log(S)

lo
g(

T
E
)

Fig. 5. The temperature TE = 〈E〉/Nf = 1/βE for different
system sizes for ρ = N/(HL) constant: (•) only L is increased,
(∗) H and L are increased, (�) only H is increased.

It is remarkable that the χ2-distribution persists for
the dissipative granular gas. This means that the total ki-
netic energy E is an extensive function of Nf although it
is not an extensive function of N . Correspondingly, energy
fluctuations decrease proportionally to 1/

√
Nf when Nf is

increased. This leads us to propose the following definition
of a granular temperature, TE = 〈E〉/Nf = 1/βE. Fig-
ure 5 indeed shows that TE is intensive whatever means we
choose to increase the system size. For large enough sys-
tems, TE becomes constant within 5% fluctuations when
the system size is increased although the density distribu-
tion in space changes. As shown in Figure 1, the system
is inhomogeneous at large H , the density being larger far
from the piston.
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The temperature TE is a global measurement over all
the cell. It would be also interesting to try a local defi-
nition of the temperature TE , in order to check if there
is a temperature gradient in this system “heated” at one
side by the piston. We do observe this tendency but there
are some difficulties to measure the fluctuations of E in
stripes which must be sufficiently narrow to give a local
measurement but must contain enough particles to pro-
vide statistically relevant measurements.

It is difficult to give a physical interpretation of Nf :
the particle velocities become more correlated when the
collisions are more inelastic such that the effective num-
ber of degrees of freedom of the gas decreases. In some
sense, coarse-grained velocities defined on a correlation
length that increases with dissipation, behave like inde-
pendent Gaussian variables and give the χ2-distribution in
first approximation. We have presently no mean to evalu-
ate Nf from the system parameters. In addition, it would
be rather difficult to measure the fluctuations of the total
kinetic energy E in 3D experimental configurations be-
cause we need to know the velocities of all particles.

4 Large deviations of injected power

A more easily measurable quantity is the power I, injected
by the moving piston into the granular gas. More precisely,
it is possible to measure a smoothed injected power

Iτ (t) =
1
τ

∫ t+τ

t

I(t′)dt′, (3)

over a time τ , due to the time resolution of the experimen-
tal device. Generally τ is (or can be chosen) much larger
than all the “microscopic” characteristic times (collision
time, particle free flight time, etc.). If τ is larger than any
correlation time of the system then the large deviation
theorem [10] gives the probability Π to observe a fluctua-
tion Iτ (t) = U :

Π(Iτ (t) = U) ≈ C · exp(−τFI(U)), (4)

where FI is the function of large deviations plotted in
Figure 6. For large τ , it is a convex function with one
minimum equal to zero for U = 〈I〉 [10]. Moreover, it
must be an extensive function of the independent degrees
of freedom of I. Actually I and then Iτ are integrated
in space and for large enough systems, one expects the
large deviation theorem to hold in space, i.e. we expect:
FI(U) ∼ N ′

fFI(U/N ′
f ) with FI intensive and N ′

f the in-
dependent degrees of freedom of the system [10,12].

In order to extract a temperature from this function of
large deviations, we can first follow the Fluctuation Theo-
rem demonstrated for a class of reversible dissipative sys-
tems [13] or for Langevin type dynamics [14]. Thanks to
a detailed balance in these model systems, a temperature
can be obtained from the study of the probability to ob-
serve positive versus negative fluctuations of Iτ . In our
system, negative values of the injected power correspond
to events when a particle hits the piston during its de-
scending motion (see Fig. 1). Since the relative number
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Fig. 6. The large deviation function of the injected power in a
cell where L = H = 50a, smoothed over a time τ = 100τp (—),
τ = 150τp (− − −) and the large deviation function of the
dissipated power smoothed over a time τ = 100τp (− · −),
τ = 150τp (· · · ).

of negative events of Iτ is already small for τ = τp, and
becomes smaller and smaller when τ is increased, we can
perform a Taylor expansion of (4) around U = 0 ± ε:

log
(

Π(Iτ = +ε)
Π(Iτ = −ε)

)
≈ −2τ

{
ε

[
∂FI

∂U

]

U=0

}
. (5)

The last term in the bracket is expected to be intensive
(this will be checked below). It has the dimension of the
inverse of an energy. The temperature deduced here within
the formalism of large deviations corresponds to the one
rigorously computed in the Fluctuation Theorem for a
class of out-of-equilibrium reversible systems [13].

As shown in Figure 7 for a given size of the system,
equation (5) is verified as soon as τ is larger than the ex-
citation period τp. Since the number of negative events
is small and becomes smaller and smaller when τ is in-
creased, the Taylor expansion (5) is true for all τ ≥ τp but
the range of experimentally observed values of ε becomes
smaller. As conjectured in [9] and shown on a particular
example in [11], the fluctuation theorem does not apply
for non reversible dissipative systems but experimental or
direct numerical observations follow (5) precisely because
of the small range of explored ε.

From the slope βF of the curve in Figure 7, we can
define a temperature TF = 1/βF . TF is plotted in Fig-
ure 8 for different system sizes at constant density. It be-
comes constant for large enough systems. It is remarkable
that TF behaves intensively, although the mean injected
power 〈I〉 varies with the system size.

We should however point out a negative aspect of the
definition of TF . It strongly relies on the existence of nega-
tive events of the injected power and thus confers a specific
role to the null injected power. This is fine for reversible
dissipative systems for which the Fluctuation Theorem
has been demonstrated [13]. However, many realistic dis-
sipative systems do not involve negative injected power or
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Fig. 8. The temperature TF = 1/βF for different system sizes
for ρ = N/(HL) constant: (•) only L is increased, (∗) H and L
is increased, (�) only H is increased.

their existence strongly depend on the particular way the
power is injected. For a granular gas excited by a moving
piston, negative events are almost never observed if the
motion of the piston is an asymmetrical ramp with very
short descending motions. In addition, even for an excita-
tion which provides negative events for the injected power,
the dissipated power D is always positive. Therefore, it is
not possible to use the same procedure to extract a tem-
perature characterizing the fluctuations of the dissipated
power. Therefore, another approach will be considered in
the next section.

5 Characteristic fluctuations of the injected
or dissipated power

As said above, an extrapolation of the ideas stemming
from the Fluctuation Theorem to most experimental dissi-
pative systems displays some difficulties, especially due to
the possible lack of negative events in the injected power.
Moreover, the fluctuations of the injected and dissipated
power cannot be characterized in the same way.

In order to define an observable playing the role of a
“temperature”, that is, being intensive, measurable, and
efficient in characterizing more or less the level of fluc-
tuations, we consider more closely the properties of the
conservation equation (1). In the stationary regime, one
deduces the obvious equation 〈I〉 = 〈D〉. It is however
possible to use that equation once more to derive other
types of balance equations. For instance, let us define for
an observable X

CX ≡ lim
t→∞

∫ t

0

[〈X(t′)X(0)〉 − 〈X〉2] dt′. (6)

Using equation (1) to eliminate I in the expression of CI

and using time translation invariance implied by stationar-
ity to evaluate the integral on t′ together with the relation
〈I〉 = 〈D〉 leads to the important equality [15]

CI = CD. (7)

Thus, a characteristic energy TI = CI/〈I〉 can be de-
fined from the statistical properties of the injection mech-
anism — accessible to experiments — and displays a very
interesting property: the corresponding quantity TD =
CD/〈D〉 associated with the dissipation is strictly the
same. As a result, the temperature defined in such a way
is intrinsically related to the global process of energy dy-
namics throughout the system, since at both ends of the
energy transfer mechanism, its value is the same.

There is another way of understanding relation (7)
if one assumes the form σ2(X) gX(t/τX) for the time-
displaced correlations of X , where gX(t/τX) is a dimen-
sionless function that decays in an integrable way at large
times. Then, (7) can be written in the form

σ(I)
σ(D)

=
√

τD

τI
, (8)

where τX is the typical correlation time of X = I or D
and σ(X) the standard deviation. This shows that the rel-
ative fluctuations are larger when their correlation time is
smaller. This has been observed in other dissipative sys-
tems, for instance a shell model of turbulence for which
dissipation fluctuates much more rapidly than power injec-
tion but at the same time, displays a much larger relative
amplitude [9].

In addition, CX where X = I or D is related to the
curvature of the large deviation function around 〈X〉. In-
deed, due to the large deviation theorem, the probability
to get a fluctuation

∆Xτ = 1/τ

∫ t+τ

t

X(t′)dt′ − 〈X〉
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∂2F/∂U2

]
U=〈I〉 for dif-
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at large τ is essentially given by:

Π(∆Xτ ) ≈ C · exp

(

−
τF ′′

〈X〉
2

∆X2
τ

)

, (9)

where F ′′
〈X〉 =

[
d2FX/dX2

]
X=〈X〉. Therefore

σ(Xτ )2 ≈ 1
τF ′′

〈X〉
. (10)

A suitable change of the integration variables and station-
arity also impose

σ(Xτ )2 ≡ 1
τ2

〈∫ t+τ

t

∆X(t1)dt1

∫ t+τ

t

∆X(t2)dt2

〉
(11)

=
2
τ2

∫ τ

0

(τ − t) 〈∆X(t)∆X(0)〉dt. (12)

When τ tends to infinity, (6) and (11) give at the first
order in 1/τ : CX ≈ 1/(2F ′′

〈X〉) and we have from (7),
F ′′
〈I〉 ≈ F ′′

〈D〉. This is shown in Figure 6 where the cur-
vature of FI and FD have become equal for large τ .

For our granular gas, TI is displayed in Figure 9 and
behaves intensively when the system is large enough.

As for TE, such a concept is liable to be generalized
to local versions of this temperature, since a part of the
system can always be thought as a dissipative open sub-
system exchanging energy with its neighbourhood. How-
ever, the fluctuations of the energy flux coming into it
should be dominated by a particle flux term. Indeed, if we
estimate the relative fluctuations of the number of par-
ticles, σ(N)/〈N〉, in a subsystem containing the third of
the square cell (50a×50a) near the piston, then σ(N)/〈N〉
can go up to 20% (see Fig. 1). This changes the physical
source of the fluctuations. Anyway, as for TE , such local
measurements could give interesting results but are not
the purpose of this work.

6 Conclusion

To conclude we would like to emphasize that the study of
the fluctuations of global variables like the total kinetic
energy — fluctuations which are far from being negligible
in out-of-equilibrium systems — takes into account the
correlations induced by the dissipation and gives a direct
access to some effective numbers of degrees of freedom. It
is then possible to define a “temperature” which is inten-
sive in contrast to the usual granular temperature.

The study of this number of degrees of freedom versus
the number of particles should be helpful to understand
some phenomena in granular matter which look like phase
transitions. For instance, we plan to use the concepts in-
troduced here to study the long wave instability that oc-
curs when the piston size is increased, with H and ρ con-
stant. This clustering transition must be of a nature very
different from the stratification shown Figure 1 which is
essentially due to the fact that injection is less and less
efficient compared to dissipation when H is increased.

The fact that the kinetic energy follows a χ2-law —
even in the largest boxes where the density is inhomoge-
neous (see Fig. 1) — could be surprising. However, it must
be noted that the kinetic energy and its fluctuations are
essentially due to the less dense part. For instance, in the
cell where Lx = 50a and Ly = 140a (with ρ = 0.04 and
r = 0.9), the bottom third of the cell, i.e. near the piston,
contains on average only 4% of the particles but 35% of the
kinetic energy, whereas the top third contains 84% of the
particles but contributes only to 25% of the kinetic energy.
In that sense, the system is always in a dilute regime. In
fact, a local estimation of the number of effective degrees
of freedom gives almost the same number of effective inde-
pendent particles in the top third as in the bottom third
of the container. This underlines the higher correlations
between particles in the more dense part where there are
more dissipative collisions per unit of time.

The relation (8) between the fluctuations of the in-
jected I and dissipated D power could also look surpris-
ing. Indeed, for a stationary regime of a turbulent flow for
instance, it is believed that dissipative scales display some
universal features whereas the dynamics of the injected
power strongly depends on the way the fluid is driven.
In turbulence as well as for granular flows, it is experi-
mentally possible to decrease the fluctuations σ(I) using
a feed-back loop in order to try to maintain a nearly con-
stant injected power, whereas it is not possible to have
direct control on σ(D) and τD that depend on the small
scale or microscopic dynamics. (8) gives a constraint on
the fluctuations of the dissipated power once the proper-
ties of the injected power are known. It would be interest-
ing to see how σ(D) and τD change when σ(I) and τ(I)
are modified by the driving. Finally, relation (8) allows
definition of a “temperature” that characterizes the fluc-
tuations of both the injected and dissipated powers.

At this stage of our study, it is clear that a lot remains
to be understood about this new approach: what is for ex-
ample the very physical interpretation of these “temper-
atures”, beyond a fluctuation measurement of the energy
injection-dissipation mechanism? Moreover, what is their
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connection with the underlying full dynamics? Could they
furnish us with a valuable tool of disorder probing, or are
they somehow connected to the direction of the transmis-
sion of heat?

Moreover, it would be convincing to connect our
nonequilibrium “temperatures” with the Fluctuation-
Dissipation Theorem in the quasi-equilibrium state as it
is done for the Fluctuation Theorem [16]. However, no-
tice that in our specific system, the non-dissipative case
is a singular limit. Indeed, as long as the dissipation is
larger than zero, i.e. as long as r is less than 1, there is
a stationary state with 〈I〉 = 〈D〉. For instance, 〈I〉 is
10 times larger for r = 0.99 than for r = 0.9 (with the
same excitation), but a high energy stationary state is
still reached where Nf ≈ 2N . But as soon as r = 1, the
stationary regime disappears, i.e. 〈E〉 and σI increase with
time whatever the excitation intensity.

Finally, to motivate experimental measurements of the
“temperatures” defined above, it is interesting to know
that in a more realistic simulation, where the value of the
restitution coefficient r depends on the relative velocity
of the two colliding particles, the correlations are strongly
increased (the number of effective degrees of freedom, Nf ,
extracted from the fluctuations of E, can be reduced by
an order of magnitude). Therefore, we hope that all the
effects presented must be easily measurable in a real ex-
periment, even in a 3D system with more particles than
in our simulations.
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